Human mobility in opportunistic networks: Characteristics, models and prediction methods

نویسندگان

  • Poria Pirozmand
  • Guowei Wu
  • Behrouz Jedari
  • Feng Xia
چکیده

Opportunistic networks (OppNets) are modern types of intermittently connected networks in which mobile users communicate with each other via their short-range devices to share data among interested observers. In this setting, humans are the main carriers of mobile devices. As such, this mobility can be exploited by retrieving inherent user habits, interests, and social features for the simulation and evaluation of various scenarios. Several research challenges concerning human mobility in OppNets have been explored in the literature recently. In this paper, we present a thorough survey of human mobility issues in three main groups (1) mobility characteristics, (2) mobility models and traces, and (3) mobility prediction techniques. Firstly, spatial, temporal, and connectivity properties of human motion are explored. Secondly, real mobility traces which have been captured using Bluetooth/Wi-Fi technologies or location-based social networks are summarized. Furthermore, simulation-based mobility models are categorized and state-of-the art articles in each category are highlighted. Thirdly, new human mobility prediction techniques which aim to forecast the three aspects of human mobility, i.e.; users’ next walks, stay duration and contact opportunities are studied comparatively. To conclude, some major open issues are outlined. KEYWORDS-Opportunistic networks, human mobility characteristics, real traces, simulation-based models, mobility prediction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Opportunistic Neighbour Prediction Using an Artificial Neural Network

Device mobility is an issue that affects both MANETs and opportunistic networks. While the former employs conventional routing techniques with some element of mobility management, opportunistic networking protocols often use mobility as a means of delivering messages in intermittently connected networks. If nodes are able to determine the future locations of other nodes with reasonable accuracy...

متن کامل

Evaluating Mobility Predictors in Wireless Networks for Improving Handoff and Opportunistic Routing

We evaluate mobility predictors in wireless networks. Handoff prediction in wireless networks has long been considered as a mechanism to improve the quality of service provided to mobile wireless users. Most prior studies, however, were based on theoretical analysis, simulation with synthetic mobility models, or small wireless network traces. We study the effect of mobility prediction for a lar...

متن کامل

Improving Performance of Opportunistic Routing Protocol using Fuzzy Logic for Vehicular Ad-hoc Networks in Highways

Vehicular ad hoc networks are an emerging technology with an extensive capability in various applications including vehicles safety, traffic management and intelligent transportation systems. Considering the high mobility of vehicles and their inhomogeneous distributions, designing an efficient routing protocol seems necessary. Given the fact that a road is crowded at some sections and is not c...

متن کامل

The Impact of Intercontact Time within Opportunistic Networks: Protocol Implications and Mobility Models

Opportunistic networking, where node mobility is utilized to achieve message delivery, has become an important class of mobile ad hoc networking. A critical component of performance analysis for opportunistic networking is a basic understanding of contact and inter-contact times for commonly studied mobility models. In this paper we give original results nodal contact-times and analytically sho...

متن کامل

PREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS

Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Network and Computer Applications

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014